Learning Compositional Rules via Neural Program
Synthesis

Maxwell Nye* Armando Solar-Lezama Joshua Tenenbaum Brenden Lake
MIT MIT MIT NYU and Facebook Al

Abstract

Humans can learn systematic, compositional rules from very little data, and learn
to quickly understand entirely novel rule-based systems. However, previous neural
network translation approaches are not able to consistently learn this compositional
behavior. In this work, we present a neuro-symbolic model which learns entire
rule systems from a small set of examples. Instead of training a model to predict
the correct output given a novel input, we train our model via meta-learning to
induce the explicit system of rules governing the behavior of all previously seen
examples. We draw on existing work in the neural program synthesis literature,
building a rule-synthesis method which exceeds human performance in an artificial
instruction learning domain, and outperforms neural meta-learning techniques.

1 Introduction

Humans have the remarkable ability to learn systematic, compositional rules from very little data.
For example, a person can learn a novel verb, “to dax," from a few examples, and immediately
understand what it means to “dax twice" or “dax around the room quietly." When learning their
native language, children face the more challenging task of learning many interrelated concepts
simultaneously, including the meaning of both verbs and modifiers (“twice", “quietly”, etc.), and how
they combine to form complex meanings. This quintessentially human ability is an important skill,

allowing humans to bootstrap complex systems from very little data.

People can also learn to quickly interpret entirely novel rule systems. In|Lake et al.[(2019), human
subjects were shown to be able to learn a novel artificial language (see Fig[I). Given only 14 examples,
participants were able to induce a set of general rules and primitives for how to translate a sequence
of nonce words into a sequence of colored circles.

An important goal of Al is to build systems which possess this sort of rule-learning ability. Previ-
ous neural-network translation approaches—which rely on very large training sets and map input
sequences directly to output sequences—are not able to consistently learn systematic, compositional
behavior from such few examples (Lake & Baroni, 2017; Lake, |[2019;|Loula et al., 2018).

In this work, we present a model which learns entire rule systems from examples. Our key idea is to
frame the problem as explicit rule-learning; instead of training a model to predict the correct output
given a novel input, we train our model to induce the explicit system of rules governing the behavior
of all previously seen examples. Once inferred, this rule system can be used to predict the behavior
of any new example.

This explicit rule-based approach confers several advantages compared to a pure input-output based
approach. Instead of learning a black-box input-output mapping, and applying it to each new query
item for which we’d like to predict an output, we instead search for an explicit program which we
can check against previous examples (the support set). This allows us to propose and check candidate

*Corresponding Author. mnye@mit .edu

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

programs, only terminating search when the proposed solution is consistent with prior data. This
framing also allows immediate and automatic generalization: once the correct rule system is learned,
it can be correctly applied in novel scenarios which are a) arbitrarily complex and b) outside the
distribution of previously seen examples. To build our rule-learning system, we draw on existing
work in the neural program synthesis literature (Ellis et al.,|2019;|Yang & Deng,|2019)), allowing us
to solve complex rule-learning problems which are difficult for both neural and traditional symbolic
methods.

Our model is trained via meta-learning. Assuming a distribution of rule systems, or a “meta-
grammar," we train our model by sampling grammar-learning problems and training on these sampled
problems. We demonstrate that our rule-synthesis method, when trained on a general meta-grammar
of rule-systems as in |Lake|(2019)), can match or exceed human performance, and outperform neural
meta-learning techniques.

Study instructions Test instructions
Primitives Function 3 Function 1 Function compositions
dax ® wif ® lug kiki wif ® @ 2up fep 88% zup fep kikilug ° 85%
lug @ zup dax kikilug @ @ Function 2 ‘wif kiki zup fep] 85%
Function 1 . - zup blicketlug © @ ® 79% lug kiki wif blicket zup ecoe 65%
Function compositions
lugfep @@ @ ug fep kiki wif se0e daxblicketzup @ ® ® 88% zup blicket wif kiki daxfep @ @ @ ®® ® 70%
daxfep ©@ @ , il
P wif kiki dax blicketlug ® @ ® ® Function 3 2up blicket zup kiki zup fep 75%
Function 2 lug kiki wit fep ' YYY} wpkiddax @@ 86%
lug blicket wif ® ® @
wif blicket dax kiki lug @ ® ® ® wif kiki zup ® 86%
wif blicket dax ® @ ®

Figure 1: An example of few-shot learning of instructions. In|Lake et al.|(2019)), participants learned
to execute instructions in a novel language of pseudowords by producing sequences of colored circles.
Generalization performance is shown next to each test instruction, as the percent correct across
participants. When conditioned on the study instructions, our model is able to predict the correct
output sequences on the held out test instructions by synthesizing the grammar in Fig. 2] Figure
reproduced from |[Lake et al.|(2019)

2 Our Approach

In this section we outline our general approach to solving rule-learning tasks.

Overview: Given a small support set of input-output examples, our goal is to produce the outputs
corresponding to a query set of inputs. To do this, we build a neural program induction model which
accepts the given examples and synthesizes a symbolic program, which we can execute on query
inputs to predict the desired query outputs. Our symbolic program consists of an “interpretation
grammar," which is a sequence of rewrite rules, each of which represents a transformation of token
sequences. The interpretation grammar is discussed below. At test time, we employ our neural
program induction model to drive a simple search process. This search process proposes candidate
symbolic programs by sampling from the neural program induction model and symbolically checks
whether candidate programs satisfy the support examples by executing them on the support inputs.
The search process builds the program iteratively, by sampling one rewrite rule at a time, and checking
this rule for consistency with the support examples. Our model is trained via a meta-learning approach.
During a training episode, our model is given support examples, and the goal is to infer an underlying
program to explain the support and held-out query examples.

Model: Figure 2]illustrates our model. The neural model is relatively simple and consists of two
components: an encoder, which encodes each support example and each previous rule into a vector,
and a decoder RNN, which decodes the next rule while attending to the examples and the previous
rules. For each support example, the input sequence and output sequence are each encoded into a
vector by an input RNN encoder and an output RNN encoder, respectively, and then combined via
a linear layer to produce one vector per support example. Likewise, each previous rule is encoded
via a separate rule RNN encoder. The decoder RNN is initialized with the sum of all of the support
example vectors combined with the sum of the rule vectors, and decodes the output by attending to
the support examples and the previous rules at each decoding step. The decoder attends to both the

Decoder RNN

0
2 concat: ‘ul fep -> [ul]l [ul] [ul]®
=3
g RED RED R}:D»-
3
o conca F .)
ully Synthesized Grammar:
2 BLUE BLUE BLUE»- ly Sy
dax -> RED
L lug -> BLUE
zup ->

wif -> GREEN
u2 fep -> [u2] [u2] [u2]
‘lug -> BLUE‘» x2 kiki x1 -> [x1] [x2]
ul blicket u2 -> [ul] [u2] [ul]
ul x1 -> [ul] [x1]

previously
decoded rules
N
5
'
v

Figure 2: Illustration of our synthesis-based rule learner. Support examples and previously decoded
rules are encoded via RNNs. The decoder RNN attends over the resulting vectors and decodes the
next rule. Bottom right: an example of a fully synthesized grammar which solves the task in Fig. [T}

support examples and the previous rules by performing sequential double attention, first attending to
the rules, and then to the support examples, as in[Devlin et al.| (2017).

Interpretation Grammar: The interpretation grammar used in this work consists of an ordered list
of rules. Each rule consists of a left hand side (LHS) and a right hand side (RHS). The left hand
side consists of the input words, string variables x1, x2 and primitive variables ul, u2. Evaluation
proceeds as follows: An input sequence is checked against the rules, in order of the rule priority, and
if the rule LHS matches the input sequence, it is replaced with the RHS. If the RHS has variables,
they are evaluated recursively through the same process.

Iterative Grammar Construction: Our model iteratively constructs an interpretation grammar by
producing one rule at a time. After each new rule is produced, it is checked against the support
examples. If any of the support examples is now “solved"—ie, the new partial grammar transforms
the input sequence into the correct output sequence—then that example is removed from the support
set. The new rule is added to the list of “previous rules." To infer the next rule, the neural network
is conditioned on the set of previous rules and the remaining support examples. Inference proceeds
until all support examples have been solved, at which point the iteratively constructed grammar can
be applied to the held-out query set.

Meta-training: We train our model in a similar manner to Lake|(2019). During each training episode,
we randomly sample an interpretation grammar from a distribution over interpretation grammars,
or “meta-grammar.” We then randomly sample a set of input sequences consistent with the sampled
interpretation grammar, and apply the interpretation grammar to each input sequence to produce the
corresponding output sequence. This gives us a support set of input-output examples. We train our
network via supervised learning to iteratively output the interpretation grammar when conditioned
on the support set of input-output examples. In the example in Figure[T} we would take the “study
instructions" as our support set, and the “test instructions" would comprise the query set.

3 Experiments

Our experimental domain is the paradigm introduced in|Lake et al.|(2019). The goal of this domain is
to learn compositional, language-like rules from a very limited number of examples.

Training details: To perform these rule-learning tasks, we trained our model on a series of meta-
training episodes. During each episode, a grammar was sampled from the meta-grammar distribution,
and our model was trained to recover this grammar given a support set of example sequences. In our
experiments, the meta-grammar consisted of all grammars with 4 primitive rules and 2-4 higher-order
rules. Primitive rules map a word to a color (e.g. dax -> RED), and higher order rules encode
variable transformations given by a word (e.g. x1 kiki x2 -> [x2] [x1]). (In a higher-order
rule, the LHS can be one or two variables and a word, and the RHS can be any sequence of those
variables.) For each grammar, we trained with a support set of 10-20 randomly sampled examples.

We implemented our models in PyTorch, and used RNN embedding and hidden sizes of 200. We
trained our models for 12 hours on a Titan-x GPU, using a batch size of 64 and a learning rate of
0.001 using the Adam optimizer (Kingma & Bal|2014).

Alternate Models: We compare our model against two alternate models. The first alternate model
is a non-iterative version of our synthesis model, dubbed the Non-iterative baseline. This model is
trained to decode all rules at once, seperated by a special NEW_RULE character. Therefore, this model
does not encode previous rules, or modify the support set during inference. The second alternate
model is the meta seq2seq model introduced in [Lake|(2019). This model is also trained on episodes
of randomly sampled grammars. However, instead of synthesizing a grammar, the meta seq2seq
model conditions on support examples and attempts to translate query inputs directly to query outputs
in a sequence to sequence manner.

Test details: Our synthesis methods were tested by sampling from the neural network until a
candidate grammar was found which was consistent with all of the support examples. We used a
sampling timeout of 30 sec., and sampled with a batch size of 64. For the meta seq2seq model, we
greedily decoded the most likely output sequence for each query input, as in|Lake|(2019). For each
of our experiments, we tested on 50 held-out test grammars, each containing 10 query examples.

Varying number of support examples Varying number of primitives Varying number of higher-order rules

dildy| | ol

B synthesis, iterative B synthesis, iterative B synthesis, iterative
synthesis, non-iterative synthesis, non-iterative synthesis, non-iterative
m meta seq2seq e meta seq2seq m meta seq2seq

S
3
S
3
S
S

@
3
@
3
@
3

o
3
@
3
o
3

»
S
N
3
s
S

N
S
N
S
~
S

% of test queries correct

% of test queries correct

% of test queries correct

o

04
10 30 50 70

3 a 5 3 4 5
Number of support examples at test time Number of primitives at test time Number of higher-order rules at test time

Figure 3: Main experimental results. We train on random grammars with 4 primitives, 2-4 higher
order rules, and 10-20 support examples. At test time, we vary the number of support examples
(right), primitive rules (center), and higher-order rules (left). The synthesis-based approaches achieve
near-perfect accuracy for most test conditions.

Results: To evaluate our rule-learning model and alternate models, we test the trained models on
a battery of evaluation schemes. In general, we observe that the synthesis methods are much more
accurate than than the meta seq2seq method, and the iterative synthesis method is less brittle than the
non-iterative synthesis method. Our results are displayed in Figure[3] We observed that, when the
support set was too small, there were often not enough examples to disambiguate between several
grammars which all satisfied the support set, but may not satisfy the query set. Thus, in our first
experiment, we varied the number of support examples during test time and evaluated the accuracy of
each of our models. We observed that, when we increased the number of support elements to 50 or
more, the probability of failing any of the query elements fell to nearly zero for the synthesis-based
methods. When the test grammars come from the same distribution as the training grammars, the
synthesis-based models can almost always recover the correct grammar. However, we wanted to
determine how well these models could generalize outside the training distribution. For our second
and third experiments, we varied the number of primitives in the test grammars, and the number of
higher-order functions in the test grammars, respectively. We observe that the non-iterative synthesis
model is quite brittle: if it is only trained on 4 primitives, it cannot generalize to 5 primitives. Only
the iterative model is able to generalize to 5 primitives when trained on 4 primitives. Both synthesis
models are able to correctly translate query items when grammars have 5 higher order rules, even
though they were trained only on 2-4 higher order rules.

Furthermore, in instances where the synthesis based methods have perfect accuracy because they
recover exactly the generating grammar (or some equivalent grammar), they would also be able
to trivially generalize to query examples of any size or complexity, as long as these examples
followed the same generating grammar. On the other hand, as reported in|Lake|(2019)), approaches
which attempt to neurally translate directly from inputs to outputs cannot accurately translate query
sequences which are much longer than the training examples or test-time support examples. This is a
clear conceptual advantage of the synthesis based approach; symbolic rules, if accurately inferred,
necessarily allow correct translation in every circumstance.

Discussion: We present a neuro-symbolic program induction model which can learn rule-based
systems via meta-learning. We demonstrate that our model can learn to infer unseen rule systems in
few-shot artificial language-learning domain previously tested on humans. Future work will include
testing on larger rule-learning problems, such as the SCAN dataset (Lake & Baroni, 2017).

References

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pp. 990-998. JMLR. org, 2017.

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama.
Write, execute, assess: Program synthesis with a repl. arXiv preprint arXiv:1906.04604, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Brenden M Lake. Compositional generalization through meta sequence-to-sequence learning. arXiv
preprint arXiv:1906.05381, 2019.

Brenden M Lake and Marco Baroni. Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. arXiv preprint arXiv:1711.00350, 2017.

Brenden M Lake, Tal Linzen, and Marco Baroni. Human few-shot learning of compositional
instructions. arXiv preprint arXiv:1901.04587, 2019.

Joao Loula, Marco Baroni, and Brenden M Lake. Rearranging the familiar: Testing compositional
generalization in recurrent networks. arXiv preprint arXiv:1807.07545, 2018.

Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants. arXiv
preprint arXiv:1905.09381, 2019.

	Introduction
	Our Approach
	Experiments

